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ABSTRACT
The HJLS and PSLQ algorithms are the most popular algo-
rithms for finding nontrivial integer relations for several real
numbers. It has been already shown that PSLQ is essential-
ly equivalent to HJLS under certain settings. We here call
them HJLS-PSLQ.

In the present work, we provide two variants of HJLS-
PSLQ. The first one is a new modification of Bailey and
Broadhurst’s multi-pair version. We prove the termination
of our modification, while the original multi-pair version may
not terminate. The second one is an incremental version of
HJLS-PSLQ. For those applications requiring to call HJLS-
PSLQ many times, such as finding the minimal polynomial
of an algebraic number without knowing the degree, we show
the incremental version is more efficient than HJLS-PSLQ,
both theoretically and practically.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms

General Terms
Algorithms

Keywords
integer relation, parallel algorithm, incremental algorithm,
HJLS, PSLQ

1. INTRODUCTION
Being exact, symbolic computation is usually inefficient

due to the well-known problem of intermediate swell. Being
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efficient, numerical computation only gives approximate re-
sults. For both reliability and efficiency, an idea that obtains
exact results by using approximate computing has been of
interest. We call such methods zero-error computation. The
output of zero-error algorithms are exact expressions, but
the intermediate process (partially) uses numerical method-
s, so that they are symbolic-numeric. At the end of these
algorithms, errors become zero (i.e., exact results) by certain
gap theorems from background knowledge, though errors ap-
pear at (almost) every step. For instance, applying the al-
gorithm presented in [30], one can recovery the exact value
of a rational number from its approximation; more general-
ly, the algorithms in [20, 26] are for reconstructing algebraic
numbers. In many zero-error algorithms, such as algebra-
ic number reconstruction [20, 26], polynomial factorization
[17, 29], etc., the problem to be solved is finally converted
to finding an integer relation.
A vector m ∈ Z

n \ {0} is called an integer relation for
x ∈ R

n if 〈x,m〉 = 0. The problem of finding integer rela-
tions for rational or real numbers can be dated back to the
time of Euclid. It is well known that the problem for n = 2
can be solved by applying the euclidean algorithm, or, e-
quivalently, the continued fraction algorithm. Many famous
mathematicians worked on this problem for the case n ≥ 3,
including Jacobi, Hermite, Poincaré, etc. (See [14, 10] and
references therein for more history notes on this problem.)
The first breakthrough presented by Ferguson and Forcade is
a generalization of the euclidean algorithm [11]. It is capable
of solving the integer relation finding problem for any inte-
ger n, in the sense that it either finds an relation or claims
no relation with norm less than a given bound. The famous
LLL algorithm also can be used to solve this problem [21, p.
525]. However, the first proved polynomial-time algorithm
to solve this problem is due to H̊astad, Just, Lagarias and
Schnorr [14], referred to as HJLS. Later on, Ferguson and
Bailey [9] presented a more frequently used integer relation
finding algorithm named PSLQ (see also [10]). As Borwein
indicated in [6, App. B, Th. 7], both HJLS and PSLQ are
based on Ferguson and Forcade’s generalization. Moreover,
Meichsner [22, Sec. 2.3.1] showed that HJLS with full reduc-
tion is equivalent to PSLQ with an appropriate parameter
setting. In the remainder of the present paper, we see the
two algorithms HJLS and PSLQ as a unified one, and call
them HJLS-PSLQ. In their 2013 paper [7], Chen, Stehlé and
Villard presented a new interpretation on HJLS-PSLQ, from
the lattice point of view. Up to now, the HJLS-PSLQ algo-
rithm has been successfully used in many areas [5, 2], such as
to find the coefficients of the integer minimal polynomial of
an algebraic number, to give a new formula for π, to identify
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some constants that arise in quantum field theory, etc. For
efficiency, Bailey and Broadhurst presented a parallel vari-
ant of HJLS-PSLQ in [3], which always swaps several pairs
of rows of certain matrices. A similar technique called “all-
swap reduction” was already used to design parallel lattice
reduction algorithms [27, 28, 19, 15, 16].

We note that all above computational results about HJLS-
PSLQ are obtained by assuming exact operation on real
numbers. In this model, we present two variants of HJLS-
PSLQ in this paper.

Our results. Our first contribution is to present a modified
multi-pair variant of the HJLS-PSLQ algorithm with termi-
nation guaranteed. In [3], Bailey and Broadhurst presented
the multi-pair variant of HJLS-PSLQ, which is suitable for
parallel computing. However, the termination of that algo-
rithm was not proven. As Bailey and Broadhurst pointed
out, “for certain special problems, the multi-pair algorithm
falls into a repeating cycle”. By analyzing the algorithm, we
determined that the reason behind this phenomenon is that
the inequality in Lemma 3-(3) (see also [10, Lem. 8]) may
not hold when executing the multi-pair HJLS-PSLQ algo-
rithm. If this case happens, the algorithm may not make
any progress towards finding an integer relation. Based on
this analysis, we fix that by adding a judgement on choosing
swap pairs (see step 2a in Algorithm 3) and present a modi-
fied multi-pair HJLS-PSLQ algorithm (Algorithm 3) whose
termination is proven in Section 3.3. Furthermore, the mod-
ified algorithm is still suitable for parallel computing.

Our second contribution is to present an incremental vari-
ant of the HJLS-PSLQ algorithm, called incremental HJLS-
PSLQ (IPSLQ for short, see Algorithm 4). Roughly speak-
ing, given x = (x1, . . . , xn) ∈ R

n, HJLS-PSLQ directly de-
tects an integer relation for x, while IPSLQ presented in this
paper gradually detects an integer relation for (xi, . . . , xn),
where i ranges from n − 1 to 1. We prove the complexity
bound of IPSLQ is the same as PSLQ: it requires O(n3 +
n2 log λ(x)) iterations (see Algorithm 4 for the meaning of an
iteration) to find an integer relation for an n-dimensional real
vector x, where λ(x) denotes the smallest 2-norm among all
integer relations for x. Each iteration can be finished within
O(n2) real arithmetic operations, e.g., using the technique
in [10, Sec. 8]. During our analysis, the principal difficulty
is that the classical potential function for HJLS-PSLQ anal-
ysis may lead to a larger bound on the number of iterations
that IPSLQ requires; see Section 4.1). To overcome this ob-
stacle, we define a new potential function for IPSLQ. Then
the complexity result for IPSLQ is proved to be the same as
the original HJLS-PSLQ, but interestingly, in some practical
applications, such as finding the minimal polynomial of an
algebraic number, IPSLQ is more efficient than HJLS-PSLQ.

As an application of IPSLQ, we consider the problem of
finding minimal polynomial for an algebraic number: Given
an algebraic number α with degree ≤ d and height ≤ M ,
how to compute its minimal polynomial? Applying HJLS-
PSLQ directly to solve this problem costs O(d4 + d3 logM)
iterations, while applying IPSLQ costs only O(d3+d2 logM)
iterations; see Section 4.2 for details. We note that the grad-
ual LLL algorithm in [18] has a good performance for this
problem in practice, however, it yet requiresO(d4+d3 logM)
swaps (according to [18, Th. 4]), where the cost of a swap
is similar to that of an iteration in our setting.

Notations. Throughout this paper, vectors are in row and

denoted in bold. If x is a vector, ‖x‖ denotes its euclidean
norm. For a real vector x, let λ(x) denote the smallest 2-
norm among all integer relations for x. Let GLn(Z) denote
the set of all n× n integral matrices with determinant ±1.

Organization. In next section, we recall the HJLS-PSLQ
algorithm and its multi-pair variant that will be the basis for
us. In Section 3, we present an improved multi-pair HJLS-
PSLQ whose termination is proven. We then give another
variant of HJLS-PSLQ, namely IPSLQ, in Section 4 with an
application to the minimal polynomial finding problem.

2. PRELIMINARIES
In this section, we recall some definitions, HJLS-PSLQ

and its multi-pair variant.
Let A ∈ R

n×m be a matrix of rank r. It has a unique
LQ decomposition A = L ·Q, where the Q-factor Q ∈ R

r×m

has orthonormal rows (i.e., QQT = Ir), and the L-factor
L ∈ R

n×r satisfies the following property: there exist di-
agonal indices 1 ≤ k1 < . . . < kr ≤ n, such that li,j = 0
for all i < kj , and lkj ,j > 0 for all j ≤ r. In particular,
when n = r, the L-factor is lower-triangular with positive
diagonal coefficients. The LQ decomposition of A is equiva-
lent to the more classical QR decomposition of AT , such as
in [13, Sec. 5.2].

2.1 The HJLS-PSLQ algorithm
The HJLS-PSLQ algorithm starts with constructing a ma-

trix Hx.

Definition 1 ([10, Def. 2]). Given an n dimensional
real vector x = (x1, . . . , xn) with xi 	= 0, define the partial

sums sj = (
∑n

k=j x
2
k)

1/2 for j = 1, . . . , n, and define Hx =

(hij) ∈ R
n×(n−1) as follows:

hij =

⎧
⎪⎨

⎪⎩

0, if 1 ≤ i < j ≤ n− 1,

si+1/si, if 1 ≤ i = j ≤ n− 1,

−xixj/(sisj+1), if 1 ≤ j < i ≤ n.

We call Hx the hyperplane matrix for x.

According to this definition, Hx ∈ R
n×(n−1) is a full col-

umn rank and lower trapezoidal matrix with positive diag-
onal elements. Moreover, one can verify that Hx is a scale
invariant with respect to x, i.e., if y = c · x with c > 0 then
Hy = Hx.
The main part of HJLS-PSLQ is a four-step iteration,

whose goal is to reduce the rows of Hx by left multiplying
matrices in GLn(Z) and right multiplying orthogonal ma-
trices until the last diagonal element of the resulting lower
trapezoidal matrix is zero. The iteration consists of size re-
ductions and Bergman swaps, and ends up with either find-
ing an integer relation or claiming that there does not exist
an integer relation with norm ≤ M , where M is a given
bound.

Definition 2. Let H = (hi,j) ∈ R
n×(n−1) be a lower

trapezoidal matrix with all diagonal elements positive. We
say H is size-reduced if |hi,j | < 1

2
|hj,j | holds for i > j.

Given H , it is possible to find a unimodular matrix U ∈
GLn(Z) such that U ·H is size-reduced. It is a classical re-
sult that computing U and updating U ·H can be completed
within O(n3) real arithmetic operations, e.g., using the size
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reduction scheme in [21], [14], or, the modified Hermite re-
duction in [10].

Definition 3 (Bergman swap). Let γ > 2/
√
3 and

H = (hi,j) ∈ R
n×(n−1) be a lower trapezoidal matrix with

all diagonal elements nonzero. Choose the largest r such
that

γrhr,r = max
j∈{i,...,n−1}

{
γj · hj,j

}
,

and then swap the r-th row and the (r + 1)-th row of H.

The swap condition in Definition 3 is called the Bergman
condition, which was originally presented by Bergman in [4].
It considers all diagonal elements so that it is global, in con-
trast to the Siegel condition in many lattice reduction algo-
rithms, where the swap position r is chosen to be the smallest
index i such that h2

i,i ≥ γ2 · h2
i+1,i+1.

For convenience, we give the description of HJLS-PSLQ,
as in Algorithm 1.

Algorithm 1 (HJLS-PSLQ).

Input: A vector x = (x1, . . . , xn) ∈ R
n with xi 	= 0 for

i = 1, . . . , n, a positive number M ≥ 1, and a parameter
γ > 2/

√
3.

Output: Either return an integer relation for x, or return
“λ(x) > M”.

1. Construct the hyperplane matrix Hx ∈ R
n×(n−1). Set

H := Hx, A := In and B := In. Size-reduce H producing
a unimodular matrix U , and update A = U ·A and B :=
B · U−1.

2. While hn−1,n−1 	= 0 do
(a) Perform the Bergman swap onH producing the swap

position r, and swap the r-th row (column) and the
(r + 1)-th row (column) of the matrix A (B).

(b) Update H to the L-factor of H .
(c) Size-reduce H producing U ∈ GLn(Z), and update

A and B as in step 1.
(d) If maxj∈{1,...,n−1} hj,j < 1/M then return “λ(x) >

M”.
3. Return the last column of B.

Note that to complete Step 2b, computing the full LQ de-
composition on H is not necessary, since only four elements
(i.e., the submatrix consisting of the r and r + 1 rows of
columns r and r+1) of the L-factor may be changed during
this step; see the equation (1) for the update formula.

Lemma 1 ([10, Th. 1]). Let x ∈ R
n \ 0. Suppose that

for any unimodular matrix U , there exists an (n−1)×(n−1)
orthogonal matrix such that H = UHxQ is lower trapezoidal
and all of the diagonal elements of H satisfy hj,j > 0. Then

λ(x) ≥ 1

max1≤j≤n−1 hj,j
.

In fact, all steps of HJLS-PSLQ are to produce the matri-
ces U and Q satisfying the condition in Lemma 1, however,
storing and updating Q are not necessary, as the output of
the algorithm is only related to the matrices U and H .

Lemma 2 ([10, Th. 2, 3]). Given x ∈ R
n with integer

relations, HJLS-PSLQ can find an integer relation m, sat-
isfying ‖m‖ ≤ γn−2λ(x), for x within O(n3 + n2 log λ(x))
iterations.

2.2 The multi-pair version of HJLS-PSLQ
For parallelizing HJLS-PSLQ, Bailey and Broadhurst pro-

posed a multi-pair variant [3]. The key idea is that one can
swap several pairs of rows of the matrix H on different pro-
cessors within one iteration, rather than only one Bergman
swap during one iteration. This technique is similar to the
“all-swap reduction” in [27, 28, 19, 15, 16] for parallelizing
LLL. We recall this algorithm, based on [3, p. 1728], as
follows.

Algorithm 2 (multi-pair HJLS-PSLQ).

Input: A vector x = (x1, . . . , xn) ∈ R
n with xi 	= 0 for

i = 1, . . . , n, a positive number M ≥ 1, and a parameter
γ > 2/

√
3.

Output: Either return an integer relation for x, or return
“λ(x) > M”.

1. Construct Hx ∈ R
n×(n−1). Set H := Hx, A := In and

B := In. Size-reduce H producing a unimodular matrix
U , and update A = U ·A and B := B · U−1.

2. While hn−1,n−1 	= 0 do
(a) Sort the n−1 entries {γj ·hj,j} and let j1 be the index

corresponding to the largest γj · hj,j . Then select
pairs of indices (jκ, jκ+1), where jκ is the sort index.
If at any step either jκ or jκ + 1 has already been
selected, pass to the next index in the list. Continue
until the list is exhausted. Let p denote the number
of pairs actually selected in this manner.

(b) For κ from 1 to p, swap the rows (columns) jκ and
jκ + 1 of the matrix H and the matrix A (B). For κ
from 1 to p, update H to the L-factor of H .

(c) Size-reduce H , and update A and B as in step 1.
(d) If maxj∈{1,...,n−1} hj,j < 1/M then return “λ(x) >

M”.
3. Return the last column of B.

Let p denote the number of pairs actually selected in step
2a. Obviously, the key step, step 2b, of Algorithm 2 is suit-
able for parallel execution. Thus, one can use p processors
to swap the jκ-th row and the (jκ + 1)-th row of H at the
same time (κ = 1, . . . , p). Bailey and Broadhurst showed
that the selection of up to p disjoint pairs seems to have the
effect of reducing the iteration count by nearly the factor p,
however, they did not offer a proof for the termination of
the multi-pair version of HJLS-PSLQ.

3. PARALLEL HJLS-PSLQ WITH TERMI-
NATION

In this section, we first find out the reason why multi-pair
HJLS-PSLQmay not terminate, and then present a modified
version of multi-pair HJLS-PSLQ with a termination proof.

3.1 Termination of HJLS-PSLQ
To analyze the reason that may cause a repeating cycle,

we first recall the termination proof for the HJLS-PSLQ al-
gorithm, which is extracted from [10].
The idea is to prove a function Π(k), which is called the Π

function, with respect to the number of iterations k has the
following properties: (1) 1 ≤ Π(k) ≤ K and (2) Π(k) strictly
increases by a factor τ with τ > 1 when k increases by one,
where K is an upper bound on Π(k) and is related to the
dimension n, λ(x) and the parameter γ. The Π function is
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defined as

Π(k) =

n−1∏

j=1

min{γn−1λ(x), 1/h
(k)
j,j }n−j ,

where h
(k)
i,j represents the i-th row and j-th column element

of the matrix H after exactly k iterations of HJLS-PSLQ.
Furthermore, the H(k) has the following useful properties.

Lemma 3. Let H(k) = (h
(k)
i,j ) denote the matrix H in

HJLS-PSLQ after exactly k iterations.

(1) If h
(k)
j,j = 0 for some 1 ≤ j ≤ n−1 and no smaller k, then

j = n− 1 and a relation for x appears as a column of the
matrix B.

(2) During the k-th iteration of the algorithm, h
(k)
j,j ≤ 1 for

j = 1, . . . , n− 1.

(3) Before doing the k-th Bergman swap, γn−2λ(x)h
(k−1)
r,r ≥

1.

Proof. This lemma is concluded from [10, Lem. 5, 6, 8].
Here, we only give the proof of (3).

By the choice of r in the step 2a, γrh
(k−1)
r,r ≥ γjh

(k−1)
j,j for

j = 1, . . . , n− 1. Hence

γn−1h(k−1)
r,r ≥ γrh(k−1)

r,r ≥ γjh
(k−1)
j,j ≥ γh

(k−1)
j,j

for all j including j0 such that h
(k−1)
j0 ,j0

= max{h(k−1)
j,j }. It

follows from Lemma 1 that λ(x) ≥ 1/h
(k−1)
j0 ,j0

, which implies
(3).

When the k-th Bergman swap happened with r < n− 1,
we consider the submatrix consisting of the r-th and (r+1)-
th rows of columns r and r + 1 before and after Step 2a, 2b
in Algorithm 1:

(
h
(k−1)
r,r

h
(k−1)
r+1,r h

(k−1)
r+1,r+1

)
→
(

h
(k)
r,r

h
(k)
r+1,r h

(k)
r+1,r+1

)
,

where

h(k)
r,r =

√(
h
(k−1)
r+1,r

)2
+
(
h
(k−1)
r+1,r+1

)2
,

h
(k)
r+1,r = h(k−1)

r,r · h(k−1)
r+1,r/h

(k)
r,r ,

h
(k)
r+1,r+1 = h(k−1)

r,r · h(k−1)
r+1,r+1/h

(k)
r,r .

(1)

During the iteration in HJLS-PSLQ, all factors of the Π
function remain except hr,r and hr+1,r+1. Therefore,

Π(k)

Π(k − 1)
=

⎛

⎝
min

{
γn−1λ(x), 1/h

(k)
r,r

}

min
{
γn−1λ(x), 1/h

(k−1)
r,r

}

⎞

⎠
n−r

·
⎛

⎝
min

{
γn−1λ(x), 1/h

(k)
r+1,r+1

}

min
{
γn−1λ(x), 1/h

(k−1)
r+1,r+1

}

⎞

⎠
n−r−1

.

Set S=γn−1λ(x)h
(k)
r,r , T=γn−1λ(x)h

(k−1)
r+1,r+1, θ = h

(k)
r,r/h

(k−1)
r,r

= h
(k−1)
r+1,r+1/h

(k)
r+1,r+1, and let

F (X) =
min{X, 1}
min{X, θ} .

Then

Π(k)

Π(k − 1)
= F (S)

(
F (S)

F (T )

)n−r−1

.

Let τ = 1/
√

1/4 + 1/γ2. From equation (1) and γ >

2/
√
3, we have 0 < θ ≤ 1/τ < 1 and S ≥ T . For X > 0

and 0 < θ < 1, F (X) does not decrease when increasing X,
so that F (S) ≥ F (T ). Furthermore, it follows from Lemma
3-(3) that S ≥ γθ ≥ θ, so we have

Π(k)

Π(k − 1)
≥ min{S, 1}

min{S, θ} ≥ τ > 1.

When the swap position is exactly the last row, namely r =
n− 1, then the only change is

h
(k)
n−1,n−1 =

∣∣∣h(k−1)
n,n−1

∣∣∣ ≤ 1

2
h
(k−1)
n−1,n−1,

so that

Π(k)

Π(k − 1)
≥ min{S, 1}

min{S, θ} ≥ τ > 1.

Overall, we obtain Π(k) ≥ τΠ(k − 1). Then the num-
ber of iterations in Lemma 2 follows from 1 ≤ Π(k) ≤
(
γn−1λ(x)

)n2−n
2 .

3.2 Analysis for multi-pair HJLS-PSLQ
We now consider the same strategy to prove the termi-

nation of Algorithm 2. Suppose only two pairs are select-
ed in step 2a before the k-th swap, namely p = 2, say

(jκ1 , jκ1+1) and (jκ2 , jκ2+1), and assume that γjκ1h
(k−1)
jκ1 ,jκ1

=

max γjh
(k−1)
j,j and max{jκ1 , jκ2} < n− 1.

From the analysis in Section 3.1, we have

Π(k)

Π(k − 1)
≥ τ · F ′(S′)

(
F ′(S′)
F ′(T ′)

)n−jκ2−1

with

F ′(X) =
min{X, 1}
min{X, θ′} ,

where

S′ = γn−1λ(x)h
(k)
jκ2 ,jκ2

,

T ′ = γn−1λ(x)h
(k−1)
jκ2+1,jκ2+1,

θ′ = h
(k)
jκ2 ,jκ2

/h
(k−1)
jκ2 ,jκ2

= h
(k−1)
jκ2+1,jκ2+1/h

(k)
jκ2+1,jκ2+1.

For the same reason, we have F ′(S′) ≥ F ′(T ′). Therefore

Π(k)

Π(k − 1)
≥ τ · min{S′, 1}

min{S′, θ′} .

Actually, if one can prove Π(k)
Π(k−1)

≥ τ 2 then Algorithm 2 re-

ally parallelizes HJLS-PSLQ. However, as stated in Theorem
1, one can only guarantee

λ(x) ≥ 1/ max
1≤j≤n−1

hj,j ,

which implies γn−2λ(x)hr,r(k−1) ≥ 1 (Lemma 3-(3)). But,
unfortunately, one cannot obtain S′ ≥ γθ′, and thus can-

not obtain min{S′,1}
min{S′,θ′} ≥ τ . Even more, one cannot obtain

min{S′,1}
min{S′,θ′} ≥ 1/τ in general, because S′ might be much s-

maller than 1 in practice. When this case happens, the iter-
ation of Algorithm 2 will make no progress, which leads to
non-termination.

91



3.3 Modificatio of multi-pair HJLS-PSLQ
Based on the analysis above, we now give a modification

on the pair selection strategy, which implies a modification
of multi-pair HJLS-PSLQ with termination guaranteed.

Algorithm 3 (Modified multi-pair HJLS-PSLQ).

Input: Suppose x = (x1, . . . , xn) ∈ R
n with xi 	= 0 for i =

1, . . . , n has integer relations. Input x, a positive number
M ≥ 1, a positive number N such that 1 ≤ N ≤ λ(x) and
a parameter γ > 2/

√
3.

Output: An integer relation for x.

1. Construct Hx ∈ R
n×(n−1). Set H := Hx, A := In and

B := In. Size-reduce H producing a unimodular matrix
U , and update A = U · A and B := B · U−1.

2. While hn−1,n−1 	= 0 do
(a) Sort the entries

{γj · hj,j : the j’s are such that γn−2Nhj,j ≥ 1}
and let j1 be the index corresponding to the largest
γj · hj,j . Then select pairs of indices (jκ, jκ + 1),
where jκ is the sort index. If at any step either jκ
or jκ +1 has already been selected, pass to the next
index in the list. Continue until the list is exhausted.
Let p denote the number of pairs actually selected in
this manner.

(b) For κ from 1 to p, swap the rows (columns) jκ and
jκ + 1 of the matrix H and the matrix A (B). For κ
from 1 to p, update H to the L-factor of H .

(c) Size-reduce H , and update A and B as in step 1.
3. Return the last column of B.

Comparing with Algorithm 2, the modified multi-pair HJLS-
PSLQ algorithm features the following.

Firstly, instead of sorting n−1 elements γj ·hj,j , Algorithm
3 only considers those subscripts jκ such that

γn−2λ(x)hjκ,jκ ≥ γn−2Nhjκ ,jκ ≥ 1,

which guarantees that Lemma 3-(3) always holds for all se-
lected pairs (jκ, jκ + 1), κ = 1, . . . , p. Namely, before doing

the k-th Bergman swap, γn−2λ(x)h
(k−1)
jκ,jκ

≥ 1. Thus, we have

S′ ≥ γθ′ ≥ θ′ so that

Π(k)

Π(k − 1)
≥ τ · min{S′, 1}

min{S′, θ′} ≥ τ 2 > 1,

which implies the termination of Algorithm 3.
Secondly, it seems that Algorithm 2 has higher concurren-

cy than Algorithm 3, as the pair count in Algorithm 3 may
be larger than that in Algorithm 2. However, as showed be-
fore, more swaps do not mean more progress. According to
Bailey and Broadhurst’s report [3, p. 1729], a swap might
not increase Π(k) in extremely rare nontrivial problems. For
modified multi-pair HJLS-PSLQ, this case will not happen.
In fact, if p pairs in step 2a of Algorithm 3 are exchanged,
then it follows that

Π(k)

Π(k − 1)
≥ τp > 1.

This means that we make the Π function progress as doing
p Bergman swaps.

Thirdly, comparing with Algorithm 2, the input of Algo-
rithm 3 adds a positive number N ≤ λ(x). In [1], Babai,
Just and Meyer auf der Heide show that it is not possible

to decide whether there exists a relation for a given x ∈ R
n

under the exact real arithmetic model with the floor func-
tion. Therefore, in modified multi-pair HJLS-PSLQ we only
consider the case that x has integer relations. Actually, the
closer N to λ(x), the more pairs will be selected, and hence
the higher concurrency can be achieved.

Theorem 1. Given x = (x1, . . . , xn) ∈ R
n having inte-

ger relations, the modified multi-pair HJLS-PSLQ algorithm
finds an integer relation m for x within O(n3 +n2 log λ(x))
iterations.

Proof. According to the analysis above, modified multi-
pair HJLS-PSLQ performs p swaps per iteration, and each
swap makes the Π function increase by a factor τ .

4. THE IPSLQ ALGORITHM
In many applications, such as finding the minimal polyno-

mial for an algebraic number (see Section 4.2), one needs to
repeatedly call HJLS-PSLQ to try, for i = 1, . . . , n, whether
there exists an integer relation for xi = (x1, . . . , xi), but the
intermediate process and the computed result for xi−1 is not
useful any more for xi. This phenomenon makes that HJLS-
PSLQ is not so efficient for this kind of applications. In this
section, we give another variant of HJLS-PSLQ, against such
a phenomenon.

4.1 Algorithm description
We now present and analyze the second variant of the

HJLS-PSLQ algorithm in this paper, called incremental HJLS-
PSLQ (IPSLQ for short).

Algorithm 4 (IPSLQ).

Input: A vector x = (x1, . . . , xn) ∈ R
n with xi 	= 0 for

i = 1, . . . , n, a positive number M ≥ 1, and a parameter
γ > 2/

√
3.

Output: Either return an integer relation for x, or return
“no relation with length smaller than M”.

1. Construct Hx ∈ R
n×(n−1). Set H := Hx, A := In and

B := In. Size-reduce H and update A and B. Set κ :=
n− 1.

2. While κ ≥ 1 do
(a) While hn−1,n−1 	= 0 do

i. Choose the largest r such that γrhr,r =
maxj∈{κ,··· ,n−1}

{
γjhj,j

}
.

ii. Swap the r-th and the (r+1)-th rows of H and
update A and B.

iii. If r < n − 1 then update H to the L-factor of
H .

iv. Size-reduce H and update A and B.
v. If maxj∈{κ,...,n−1} hj,j < 1/M then do the fol-

lowing: If κ > 1 then update κ := κ− 1 and go
to Step 2; Else return “no relation with length
smaller than M”.

(b) Return the last column of B.

The main difference between IPSLQ and HJLS-PSLQ is
that the latter one considers x1, . . . , xn directly, while the
former one considers x1, . . . , xn gradually, i.e., if the vector
(xi, . . . , xn) has no relation with 2-norm less than M then
IPSLQ adds xi−1 to the left and tries to find an integer
relation for (xi−1, xi, . . . , xn); see Step 2(a)v.
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Lemma 4. Let x = (x1, . . . , xn) ∈ R
n with xi 	= 0 and

x′ = (xj , · · · , xn). Then the hyperplane matrix Hx′ for x′ is
exactly the right-bottom-most (n− j+1)× (n− j) submatrix
of the hyperplane matrix Hx for x.

Proof. It directly follows from Definition 1.

Note that if we let x′ = (x1, · · · , xn−1), then this lemma
does not follow. From Lemma 4, if one needs to repeatedly
call HJLS-PSLQ for xi = (xi, . . . , xn) with i = n− 1, . . . , 1,
one can call IPSLQ only once to solve the same problem. In
fact, Lemma 4 implies that each transformation on Hx′ can
be seen as transformation on Hx. Thus, all of the previous
computed results for xn−1, . . . ,xi−1 are still able to be used
for xi. Combine with this observation, one can conclude that
IPSLQ has the same complexity bound as HJLS-PSLQ.

Theorem 2. The IPSLQ algorithm either finds an inte-
ger relation m for x, or proves no relation with 2-norm s-
maller than M , within O(n3 +n2 log λ(x)) iterations, where
M = O(λ(x)). Each iteration can be finished within O(n2)
exact real arithmetic operations.

Proof. Actually, each iteration of IPSLQ can be finished
within O(n2) exact real operations by using the strategy in
[10, p. 363].

Let xκ = (xκ, xκ+1, . . . , xn). To analyze the worst case,
assume that the algorithm terminates with κ = 1. This
implies that for any κ > 1, there does not exist an integer
relation for xκ with length smaller than M , i.e., λ(xκ) > M
for κ > 1. For each κ, define

P (k)
κ =

⎧
⎪⎪⎨

⎪⎪⎩

n−1∏
j=κ

min
{
γn−κM, 1/h

(k)
j,j

}n−j

, κ=2, . . . , n−1,
n−1∏
j=κ

min
{
γn−κλ(x), 1/h

(k)
j,j

}n−j

, κ = 1

as the P function of the k-th swap.
For κ = 1, the P function is the same one as the Π func-

tion for HJLS-PSLQ. For κ = 2, . . . , n − 1, because of the

condition in Step 2(a)v, we have M ≥ 1/max h
(k)
j,j (or else κ

will be replaced by κ− 1), and thus one can obtain

γn−κ−1 ·M · h(k−1)
r,r ≥ 1 (2)

for a similar reason with Lemma 3-(3), where r is the swap
position and ranges from κ to n − 1. Therefore, each swap

of IPSLQ makes P
(k+1)
κ ≥ τP

(k)
κ for κ = 1, . . . , n− 1.

Let Itr(κ) be the number of iterations that IPSLQ costs

for each κ. For κ = n− 1, we have 1 ≤ P
(k)
n−1 ≤ γ ·M . The

left hand side follows from min{M, 1/hn−1,n−1} ≥ 1 and
the right hand side follows from min{M, 1/hn−1,n−1} ≤ M .

Thus τ Itr(n−1) ≤ γ ·M .
We now consider for 2 ≤ κ < n−1. For each κ = 2, . . . , n−

2, let P
(b)
κ and P

(e)
κ be the P function at the beginning and

at the end for each κ, respectively. Then we have τ Itr(κ) ≤
P

(e)
κ /P

(b)
κ . At the end,

P (e)
κ ≤

n−1∏

j=κ

(
γn−κM

)n−j ≤ (γn−κM)(n−κ)(n−κ+1)/2.

At the beginning, h
(b)
κ+1,κ+1, . . . , h

(b)
n−1,n−1 for κ are the same

as h
(e)
κ+1,κ+1, . . . , h

(e)
n−1,n−1 for κ+ 1. So we have

P (b)
κ = min{γn−κM,

1

h
(b)
κ,κ

}n−κ ·
n−1∏

j=κ+1

min{γn−κM,
1

h
(b)
j,j

}n−j

≥
n−1∏

j=κ+1

min{γn−κM, 1/h
(b)
j,j}n−j ≥ P

(e)
κ+1

≥ P
(b)
k+1 · τ Itr(κ+1) ≥ P

(b)
k+2 · τ Itr(κ+2) · τ Itr(κ+1)

≥ P
(b)
n−2 · τ Itr(n−2)+···+Itr(κ+1)

≥ τ Itr(n−2)+···+Itr(κ+1).

Therefore,

τ Itr(κ) ≤ P
(e)
κ

P
(b)
κ

≤ (γn−κM)(n−κ)(n−κ+1)/2

τ Itr(n−2)+···+Itr(κ+1)
,

which means

τ Itr(n−2)+···+Itr(2) ≤ (γn−2M)(n−2)(n−2+1)/2.

Similarly, when κ = 1,

P
(b)
1 ≥ τ Itr(n−2)+···+Itr(2),

and

P
(e)
1 ≤ (γn−1λ(x))(n−1)(n−1+1)/2.

So we have

τ Itr(1) ≤ (γn−1λ(x))(n−1)(n−1+1)/2/τ Itr(n−2)+···+Itr(2).

Therefore, the total number of swaps that the IPSLQ algo-
rithm requires is bounded by

n−1∑

κ=1

Itr(κ) ≤ logτ (γ
n−1λ(x))(n−1)(n−1+1)/2 + logτ (γ ·M)

= O(n3 + n2 log(λ(x))),

which completes the proof.

Remark 1. If one uses the classical Π function for HJLS-

PSLQ directly, then one can only obtain γn−κλ(xκ)h
(k−1)
r,r ≥

γ before performing the k-th swap. From that, the function

n−1∏

j=κ

min{γn−κλ(xκ), 1/h
(k)
j,j }n−j

implies the termination of the algorithm as well, but with a
worse iteration count bound.

4.2 Application
In this section, we consider the problem of finding minimal

polynomial (FMP for short) of an algebraic number: Given
an algebraic number α with degree ≤ d and height ≤ M ,
how to compute its minimal polynomial?
Note that the FMP problem is different from the problem

of reconstructing the minimal polynomial from an approx-
imation (or a floating-point approximation) of an algebraic
number. We do not consider the latter one here because we
restrict ourselves under the exact real arithmetic model. We
refer to [20, 18, 26] for the latter problem.
Indeed, solving the FMP problem is a natural application

of HJLS-PSLQ. One can call HJLS-PSLQ directly with input
as (1, α, . . . , αi) for i = 1, . . . , d until the algorithm returns
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an integer relation for some i = d0 ≤ d, where d0 is the exact
degree of α. In the worst case (d0 = d), one needs to call
HJLS-PSLQ repeatedly d times, and the computed results of
previous HJLS-PSLQ computation will not be useful for the
next. So, this assignment requires totally O(d4 + d3 logM)
iterations.

We now consider how to use IPSLQ to solve the FMP
problem. If we feed IPSLQ with x = (1, α, . . . , αd) as in
classical methods, then IPSLQ firstly computes the integer
relation for (αd−1, αd), which does not make sense. Natural-
ly, we can feed the input as x = (αd, αd−1, . . . , α, 1). Lemma
4 guarantees that, for i = 2, . . . , d, the hyperplane matrix for
(αi−1, . . . , α, 1) is exactly the right-bottom most submatrix
of the hyperplane matrix for (αi, αi−1, . . . , α, 1). Then we
have the following algorithm.

Algorithm 5 (FMP).

Input: An algebraic number α with two upper bounds, d on
the degree and M on the height of α, and a parameter
γ > 2/

√
3.

Output: The exact minimal polynomial of α.

1. Initialize x = (αd, αd−1, . . . , α, 1).
2. Calling Algorithm 4 with input as x, M and γ returns

m = (md,md−1, · · · ,m1,m0) as an integer relation for
x.

3. Return P (X) = mdX
d +md−1X

d−1 + · · ·+m1X +m0.

The application of IPSLQ to efficiently solve the FMP
problem depends on the following two key points: (1) We use
(x1, . . . , xn) = (αd−1, . . . , α, 1), which is the reverse order of
the traditional version, to construct the hyperplane matrix
H . (2) The important observation is that the matrix Hx for
(xi, . . . , xn) is exactly the right-bottom most submatrix of
Hx for (xi−1, xi, . . . , xn). When we add xi−1 to (xi, . . . , xn)
from the left, the new hyperplane matrix adds a new column
to the old one from the left. Thus, the information produced
by the previous iterations is still useful for the new matrix H .
Traditional methods based on HJLS-PSLQ do not possess
this property, and thus are less efficient, i.e., using more
iterations.

Based on the analysis above, the complexity bound on
solving FMP with IPSLQ, given merely an upper bound on
degree, can be the same as with PSLQ, given the exact de-
gree.

Corollary 1. Algorithm 5 correctly computes the mini-
mal polynomial of α. It costs O(d3 + d2 logM) IPSLQ iter-
ations.

Proof. Obviously, the most costly step is the IPSLQ call,
whose complexity result is given in Theorem 2.

4.3 Experimental results
The aim of the following experiments is only to show the

difference between the traditional HJLS-PSLQ (Algorithm
1) and IPSLQ (Algorithm 4) when solving the FMP prob-
lem. Since we have neither the theoretical bit-complexity of
HJLS-PSLQ nor its variant (see Section 5), all experimental
results presented in this section are preliminary, and do not
aim to compare with many other mature software packages
with similar function but using other techniques. Thus, we
only count the number of iterations.

All the implementations are coded in Maple 15, using
multi-precision floating-point arithmetic. For fairness, the

same function uses the same technique in our implementa-
tions of HJLS-PSLQ and IPSLQ.
Consider α = 31/s + 21/t. Running these experiments in

Maple 15 with Digits := 500 gives preliminary experimen-
tal results in Table 1. Note that here Digits := 500 may
not be necessary. It is for fairness and it guarantees that
both HJLS-PSLQ and IPSLQ return the correct answer for
each test example. (To some extent, it simulates the exact
real arithmetic behavior with multi-precision floating point
arithmetic.) The reason why we choose such type of α is
that the degree of α is easy to determine (this is convenient
for our purpose) and that a similar type of α was used to
test HJLS-PSLQ in [9].
In Table 1, the input degree bound and height bound in

these tests are d and M + 1; the exact degree and height
of α are d − 1 and M , respectively. All these experimental
results are obtained by using a Windows 7 (32 bits mode)
PC with AMD Athlon II X4 645 processor (3.10 GHz) and
4 GB memory. Note that there exists a built-in function
IntegerRelations:-PSLQ in Maple 15, but for the compar-
ison in Table 1, we implement the PSLQ algorithm by our-
selves. The reasons we do not use the built-in function is
that there does not exist a height parameter M in the built-
in function. This may cause that the built-in function will
go on performing the iterations even though the height has
been greater than M .

Table 1: Algorithm 1 versus Algorithm 4 for FMP
No. s t d M ItrI ItrP
1 2 2 5 10 12 33
2 2 3 7 36 39 160
3 3 3 10 125 173 1,119
4 3 4 13 540 504 3,663
5 2 7 15 5,103 990 7,803
6 3 6 19 10,278 2,034 18,784
7 4 5 21 11,160 2,542 26,135
8 5 5 26 57,500 5,225 59,681
9 5 6 31 538,380 9,471 124,541
10 6 6 37 4,281,690 16,560 246,798

According to Table 1, the IPSLQ algorithm is faster than
the HJLS-PSLQ algorithm when used to solve the FMP
problem in the sense that IPSLQ uses less iterations (ItrI)
than that of HJLS-PSLQ (ItrP ).

d
10 20 30

5

10

15

ItrP : ItrI

Figure 1: The relation between ItrP : ItrI and the
dimension d

Moreover, the ratio between ItrP and ItrI appears to be
linear with respect to d (see Figure 1) and seems to get
larger and larger with increasing d but always smaller than
d. This result supports the theoretical analysis in the above
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